Windmills of the Minds An Algorithm for Fermat's Two Squares Theorem

Hing Lun Chan

College of Engineering and Computer Science Australian National University

CPP 2022, 17-18 January 2022.

Outline

Sum of Two Squares

Sum of Two Squares

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, ...

A prime is not 0 or 1, and divisible only by 1 and itself.

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, ...

A prime is not 0 or 1, and divisible only by 1 and itself.

Even prime: $2 = 1^2 + 1^2$, sum of two squares. Odd primes:

4k+1 | 4k+3 | sum of two squares?

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, ...

A prime is not 0 or 1, and divisible only by 1 and itself.

Even prime: $2 = 1^2 + 1^2$, sum of two squares. Odd primes:

4 <i>k</i> + 1 (tik)	4 <i>k</i> + 3 (tok)	sum of two squares?
	3	
5		$5 = 1^2 + 2^2$
	7	
	11	
13		$13 = 3^2 + 2^2$
17		$17 = 1^2 + 4^2$
	19	

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, ...

A prime is not 0 or 1, and divisible only by 1 and itself.

Even prime: $2 = 1^2 + 1^2$, sum of two squares. Odd primes:

sum of two squares?	4 <i>k</i> + 3 (tok)	4 <i>k</i> + 1 (tik)
	3	
$5 = 1^2 + 2^2$		5
	7	
	11	
$13 = 3^2 + 2^2$		13
$17 = 1^2 + 4^2$		17
	19	
	23	
$29 = 5^2 + 2^2$		29

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, ...

A prime is not 0 or 1, and divisible only by 1 and itself.

Even prime: $2 = 1^2 + 1^2$, sum of two squares. Odd primes:

4 <i>k</i> + 1 (tik)	4 <i>k</i> + 3 (tok)	sum of two squares?
	3	
5		$5 = 1^2 + 2^2$
	7	
	11	
13		$13 = 3^2 + 2^2$
17		$17 = 1^2 + 4^2$
	19	
	23	
29		$29 = 5^2 + 2^2$

If odd *n* is a sum of two squares, n = odd square + even square.

A tik prime is a sum of two squares, odd and even, uniquely.

A tik prime is a sum of two squares, odd and even, uniquely.

- 1640 Fermat's X'mas letter, claimed he had an "irrefutable" proof.
- 1659 Fermat's letter, hinted a proof by "infinite descent", very rare!

A tik prime is a sum of two squares, odd and even, uniquely.

- 1640 Fermat's X'mas letter, claimed he had an "irrefutable" proof.
- 1659 Fermat's letter, hinted a proof by "infinite descent", very rare!
- 1749 Euler proved by infinite descent, worked "on & off for 7 years".
- 1775 Lagrange proved by creating a theory of quadratic forms.
- 1801 Gauss revised Lagrange's proof, invented Gaussian integers.

A tik prime is a sum of two squares, odd and even, uniquely.

- 1640 Fermat's X'mas letter, claimed he had an "irrefutable" proof.
- 1659 Fermat's letter, hinted a proof by "infinite descent", very rare!
- 1749 Euler proved by infinite descent, worked "on & off for 7 years".
- 1775 Lagrange proved by creating a theory of quadratic forms.
- 1801 Gauss revised Lagrange's proof, invented Gaussian integers.
- 1877, 1894 Dedekind offered 2 proofs, based on Gaussian integers.
- Many other proofs, based on:
 - Jacobi sums,
 - Pigeonhole principle,
 - Continued fractions,

^{▶ ...}

Windmills and Minds

Tik Shapes

A tik (\checkmark) number n = 4k + 1 for some k. A picture for n = 37.

Tik Shapes

A tik (\checkmark) number n = 4k + 1 for some k. A picture for n = 37.

Tik Shapes

A tik (\checkmark) number n = 4k + 1 for some k. A picture for n = 37.

Tik Shapes

A tik (\checkmark) number n = 4k + 1 for some k. A picture for n = 37.

A windmill!

Tik Shapes

A tik (\checkmark) number n = 4k + 1 for some k. A picture for n = 37.

A windmill!

Tik Shapes (continued)

Another picture for n = 37.

Tik Shapes (continued)

Another picture for n = 37.

Tik Shapes (continued)

Another picture for n = 37.

Another windmill!

Hing Lun Chan (ANU)

Windmills of the Minds

Tik Shapes (continued)

Another picture for n = 37.

Another windmill!

Hing Lun Chan (ANU)

Windmills of the Minds

windmill: a central square with four identical rectangular arms.

windmill $x \ y \ z \stackrel{\text{\tiny def}}{=} x^2 + 4yz$

windmill: a central square with four identical rectangular arms.

windmill $x \ y \ z \stackrel{\text{def}}{=} x^2 + 4yz$

- Denote (windmill x y z) by a triple (x, y, z).
- Value *x* is the size (or side) of the central square.
- Values *y*, *z* are the length and width of *top* arm of central square.
- The 4 arms are arranged clockwise around the central square.

windmill: a central square with four identical rectangular arms.

windmill $x \ y \ z \stackrel{\text{def}}{=} x^2 + 4yz$

- Denote (windmill x y z) by a triple (x, y, z).
- Value *x* is the size (or side) of the central square.
- Values *y*, *z* are the length and width of *top* arm of central square.
- The 4 arms are arranged clockwise around the central square.
- Every ✓ number has at least one windmill.

Mills

How many windmills for n = 37 ?

Mills

How many windmills for n = 37 ?

- recall $n = x^2 + 4yz$, with x odd.
- compute $n x^2 = 4yz$, for all odd x.

Mills

How many windmills for n = 37? • recall $n = x^2 + 4yz$, with x odd. • compute $n - x^2 = 4yz$, for all odd x. $\frac{\text{odd } x \quad n - x^2}{1 \quad 37 - 1^2} = 36 = 4(9) \quad (1, 1, 9), (1, 9, 1)$ $3 \quad 37 - 3^2 = 28 = 4(7) \quad (3, 1, 7), (3, 7, 1)$

	$11 - X^{-}$	=	4 <i>y</i> 2	(x, y, z)
1	37 – 1 ²	=	36 = 4(9)	(1, 1, 9), (1, 9, 1), (1, 3, 3)
3	37 – 3 ²	=	28 = 4(7)	(3,1,7),(3,7,1)
5	37 – 5 ²	=	12 = 4(3)	(5,1,3), (5,3,1)
7	37 – 7 ²	=	negative!	

Mills

How many windmills for n = 37 ?

• recall
$$n = x^2 + 4yz$$
, with x odd.

• compute $n - x^2 = 4yz$, for all odd x.

odd x	n – x ²	=	4 <i>yz</i>	triple (x, y, z)
1	37 – 1 ²	=	36 = 4(9)	(1, 1, 9), (1, 9, 1), (1, 3, 3)
3	37 – 3 ²	=	28 = 4(7)	(3,1,7),(3,7,1)
5	$37 - 5^2$	=	12 = 4(3)	(5, 1, 3), (5, 3, 1)
7	37 – 7 ²	=	negative!	

All the windmills of a \checkmark number form its **mills**. Thus,

mills $37 = \{(1, 1, 9), (1, 9, 1), (1, 3, 3), (3, 1, 7), (3, 7, 1), (5, 1, 3), (5, 3, 1)\}$

How many windmills? |mills 37| = 7, an odd number.

Windmills of n = 37

Windmills of n = 37

Windmills related by Flips

The **mind** of a windmill: biggest (square) heart of the overall shape.

The mind of a windmill: biggest (square) heart of the overall shape.

A windmill transforms to another windmill through the mind (in red).

The mind of a windmill: biggest (square) heart of the overall shape.

A windmill transforms to another windmill through the mind (in red).

- (left to right) expand central square through mind, shrinking arms.
- (right to left) shrink central square through mind, expanding arms.

The **mind** of a windmill: biggest (square) heart of the overall shape.

A windmill transforms to another windmill through the mind (in red).

- (left to right) expand central square through mind, shrinking arms.
- (right to left) shrink central square through mind, expanding arms.

mind (x, y, z) = length of square mind

Using simple geometry,

mind
$$(x, y, z) = \begin{cases} x + 2z & \text{if } x < y - z \\ 2y - x & \text{else if } x < y \\ x & \text{otherwise} \end{cases}$$

Windmills related by Minds

A map f that can undo itself is an involution: $f \circ f$ = identity.

A map f that can undo itself is an involution: $f \circ f$ = identity.

A map f that can undo itself is an involution: $f \circ f$ = identity.

f involute S

A map f that can undo itself is an involution: $f \circ f$ = identity.

A map *f* that can undo itself is an involution: $f \circ f$ = identity.

For an involution *f* on a finite set *S*, due to pairing:

Theorem $\vdash \text{finite } S \land f \text{ involute } S \Rightarrow (\text{odd } |S| \iff \text{odd } |\text{fixes } f S|)$

A map *f* that can undo itself is an involution: $f \circ f$ = identity.

For an involution *f* on a finite set *S*, due to pairing:

Theorem

 $\vdash \mathsf{finite} \ S \land f \ \mathsf{involute} \ S \Rightarrow (\mathsf{odd} \ |S| \iff \mathsf{odd} \ |\mathsf{fixes} \ f \ S|)$

For any involution, *only one* fixed point ⇒ size of set is *odd*.
For any involution, size of set is *odd* ⇒ *at least one* fixed point.

A map f that can undo itself is an involution: $f \circ f$ = identity.

For an involution *f* on a finite set *S*, due to pairing:

Theorem

 $\vdash \mathsf{finite} \ S \land f \ \mathsf{involute} \ S \Rightarrow (\mathsf{odd} \ |S| \iff \mathsf{odd} \ |\mathsf{fixes} \ f \ S|)$

- For any involution, *only one* fixed point \Rightarrow size of set is *odd*.
- For any involution, size of set is odd ⇒ at least one fixed point.
- Given a \checkmark prime n = 4k + 1, zagier fix is (1, 1, k) only.
- So |mills *n*| is **odd**, flip fix exists, *n* is a sum of two squares!

Zagier's Proof

A One-Sentence Proof That Every Prime $p \equiv 1 \pmod{4}$ Is a Sum of Two Squares

D. ZAGIER

Department of Mathematics, University of Maryland, College Park, MD 20742

The involution on the finite set $S = \{(x, y, z) \in \mathbb{N}^3 : x^2 + 4yz = p\}$ defined by

$$(x, y, z) \mapsto \begin{cases} (x + 2z, z, y - x - z) & \text{if } x < y - z \\ (2y - x, y, x - y + z) & \text{if } y - z < x < 2y \\ (x - 2y, x - y + z, y) & \text{if } x > 2y \end{cases}$$

has exactly one fixed point, so |S| is odd and the involution defined by $(x, y, z) \mapsto (x, z, y)$ also has a fixed point. \Box

Don Zagier's famous proof of Fermat's Two Squares Theorem, February 1990.

Zagier's Proof

A One-Sentence Proof That Every Prime $p \equiv 1 \pmod{4}$ Is a Sum of Two Squares

D. ZAGIER

Department of Mathematics, University of Maryland, College Park, MD 20742

The involution on the finite set $S = \{(x, y, z) \in \mathbb{N}^3 : x^2 + 4yz = p\}$ defined by

$$(x, y, z) \mapsto \begin{cases} (x + 2z, z, y - x - z) & \text{if } x < y - z \\ (2y - x, y, x - y + z) & \text{if } y - z < x < 2y \\ (x - 2y, x - y + z, y) & \text{if } x > 2y \end{cases}$$

has exactly one fixed point, so |S| is odd and the involution defined by $(x, y, z) \mapsto (x, z, y)$ also has a fixed point. \Box

Don Zagier's famous proof of Fermat's Two Squares Theorem, February 1990.

All these have been formalised in other theorem provers!

Two Squares Algorithm

Two Squares Algorithm

Two Squares Algorithm

Two Squares Algorithm

Two Squares Algorithm

Two Squares Algorithm

Two Squares Algorithm

Algorithm Code

- *Input*: a tik (\checkmark) number n = 4k + 1.
- Output: a flip fix triple (x, y, y) so that $n = x^2 + (2y)^2$.

Algorithm Code

- *Input*: a tik (\checkmark) number n = 4k + 1.
- Output: a flip fix triple (x, y, y) so that $n = x^2 + (2y)^2$.

Algorithm Code

- *Input*: a tik (\checkmark) number n = 4k + 1.
- Output: a flip fix triple (x, y, y) so that $n = x^2 + (2y)^2$.

Me	Method: use a triple t.			
0	start with $t = (1,1,k)$, the zagier fix.			
0	while (<i>t</i> is not of the form (x, y, y)):			
0	$t \leftarrow \texttt{flip} t$			
0	$t \leftarrow ext{zagier} t$			
0	end while.			
0	return t, which is a flip fix.			

- flip is just swapping y, z of triple.
- zagier has double, add and subtract only.
- Algorithm is simple, and fast for \checkmark primes *n* not-too-large.
- Need to prove: code is correct, and will terminate for a ✓ prime.

Algorithm Run

Executing the algorithm in HOL4 for \checkmark prime n = 37:

```
> EVAL "two_squares 37";
val it = |- two_squares 37 = (1,6): thm
```

HOL4 allows timing of an execution:

> time EVAL "two_squares 37"; runtime: 0.00379s, gctime: 0.00000s, systime: 0.00928s. val it = |- two_squares 37 = (1,6): thm

Algorithm Run

Executing the algorithm in HOL4 for \checkmark prime n = 37:

```
> EVAL "two_squares 37";
val it = |- two_squares 37 = (1,6): thm
```

HOL4 allows timing of an execution:

> time EVAL "two_squares 37"; runtime: 0.00379s, gctime: 0.00000s, systime: 0.00928s. val it = |- two_squares 37 = (1,6): thm

More examples:

> time EVAL "two_squares 97"; runtime: 0.00770s, gctime: 0.00086s, systime: 0.00077s. val it = |- two_squares 97 = (9,4): thm > time EVAL "two_squares 1999999913"; runtime: 2m23s, gctime: 14.7s, systime: 11.3s. val it = |- two_squares 1999999913 = (1093,44708): thm > time EVAL "two_squares 12345678949"; runtime: 6m02s, gctime: 37.5s, systime: 26.0s. val it = |- two_squares 12345678949 = (110415,12418): thm

Algorithm Correctness

Preprint of paper at arXiv: https://arxiv.org/abs/2112.02556

Windmills of the Minds: An Algorithm for Fermat's Two Squares Theorem

Hing Lun Chan

Australian National University Canberra, Australia joseph.chan@anu.edu.au

Abstract

The two squares theorem of Fermat is a gem in number theory, with a spectacular one-sentence "proof from the Book". Here is a formalisation of this proof, with an interpretation using windmill patterns. The theory behind involves involutions on a finite set, especially the parity of the number of fixed points in the involutions. Starting as an existence proof that is non-constructive, there is an ingenious way to turn it into a constructive one. This gives an algorithm to compute the two squares by iterating the two involutions alternatively from a known fixed point.

CCS Concepts: • Theory of computation \rightarrow Automated reasoning;

Keywords: Number Theory, Algorithm, Iteractive Theorem Proving.

The involution on the finite set

$$S = \{(x, y, z) \in \mathbb{N}^3 \mid n = x^2 + 4yz\}$$

defined by

$$(x,y,z) \longmapsto \begin{cases} (x+2z, z, y-z-x) & \text{if } x < y-z \\ (2y-x, y, x+z-y) & \text{if } y-z < x < 2y \\ (x-2y, x+z-y, y) & \text{if } x > 2y \end{cases}$$
(1)

has exactly one fixed point, so |S| is odd, and the involution defined by $(x,y,z) \mapsto (x,z,y)$ also has a fixed point.

Algorithm Correctness

Preprint of paper at arXiv: https://arxiv.org/abs/2112.02556

Windmills of the Minds: An Algorithm for Fermat's Two Squares Theorem

Hing Lun Chan

Australian National University Canberra, Australia joseph.chan@anu.edu.au

Abstrac				
ory, with a Here is a f Per using win	mutation by involution \circ in	nvolution.		
lutions on of fixed population proof that turn it int	rmutation orbits and perio	ds.		
compute t alternative		< 2	?y ((1)
CCS Conc reasoning Keywords Proving.		d th has	ie a	
Hing Lun Chan (ANU)	Windmills of the Minds	CPP2022		21/22

Algorithm Correctness

Preprint of paper at arXiv: https://arxiv.org/abs/2112.02556

Windmills of the Minds: An Algorithm for Fermat's Two Squares Theorem

Hing Lun Chan

Australian National University Canberra, Australia joseph.chan@anu.edu.au

Abstrac The two s ory, with a Here is a f using win lutions on of fixed p proof that turn it int compute t alternative CCS Conc reasonin Keywords Proving	Permutation by involution \circ involution. Permutation orbits and periods. Orbits connecting fixed points. Orbits with odd or even periods.	< 2y d the has a	(1)
Hing Lun Chan (ANU) Windmills of the Minds C	PP2022	21/22

Thank you!